RNA‑seq analysis of predictive markers associated with glutamine metabolism in thyroid cancer.

RNA测序分析与甲状腺癌中谷氨酰胺代谢相关的预测标志物

阅读:24
作者:You Yi, Zhou Yuheng, Chen Zilu, Deng Longcheng, Shen Yaping, Wang Qin, Long Wei, Xiong Yan, Tan Foxing, Du Haolin, Yang Yan, Zhong Jiang, Ge Yunqian, Li Youchen, Huang Yan
The incidence of thyroid cancer (TC) increases year by year. It is necessary to construct a prognostic model for risk stratification and management of TC patients. Glutamine metabolism is essential for tumor progression and the tumor microenvironment. The present study aimed to develop a predictive model for TC using a glutamine metabolism gene set. Differentially expressed genes in cells with high glutamine metabolism levels from single cell RNA‑sequencing data were compared with genes differentially expressed between normal and TC tissues from The Cancer Genome Atlas Program data. Through Boruta feature selection methods and multivariate Cox regression, six crucial genes were identified for a risk‑scoring system to develop a prognostic model. The role of each gene was verified in TC cells in vitro. A risk‑scoring system was developed according to the glutamine gene set to forecast the overall survival of TC patients. This risk score could stratify TC patients and minimize unnecessary surgeries and invasive treatments. In addition, signal induced proliferation associated 1 like 2 (SIPA1L2), an important gene in the prognostic model, knockdown in TPC‑1 and BCPAP cell lines enhanced TC cell proliferation, migration and invasion. A risk model was developed based on a glutamine metabolism gene set. The model has reference values for TC stratification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。