PURPOSE: To investigate the effects and underlying mechanisms of indirubin in treating ALL using network pharmacology and experimental validation. METHODS: Potential targets of indirubin- and ALL-related genes were identified using public databases. Core genes were filtered through protein-protein interaction analysis in Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to explore the potential mechanisms of indirubin against ALL. Drug-disease-functional annotation-signaling pathway network maps were constructed. Molecular docking between indirubin and core proteins was performed using AutoDock Vina software. Finally, both in vitro and in vivo experiments were performed to validate these findings. RESULTS: PPI network analysis identified eight potential core targets of indirubin in ALL: AKT1, CASP3, and the mammalian target of rapamycin. GO and KEGG enrichment analyses suggested that the mechanism of action of indirubin against ALL involves multiple biological functions and signaling pathways, with the PI3K-AKT pathway likely playing a central role. Molecular docking findings further confirmed the strong binding affinity of indirubin for the core targets. Both in vitro and in vivo experiments demonstrated that indirubin inhibited ALL cell proliferation and induced cell cycle arrest and apoptosis; the underlying mechanism may involve the PI3K-AKT signaling pathway. CONCLUSION: The action and mechanism of indirubin in ALL through network pharmacology, as well as in vivo and in vitro experimental validation were elucidated, offering new insights and potential therapeutic avenues for the treatment of ALL.
Combining Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Effects and Mechanisms of Indirubin on Acute Lymphoblastic Leukemia.
结合网络药理学、分子对接和实验验证,探索靛玉红对急性淋巴细胞白血病的影响和机制
阅读:11
作者:Jin Lu, Guan Yunshuang, Li Xue, Wang Mingyue, Shen Ying, Wang Nianxue, He Zhixu
| 期刊: | Drug Design Development and Therapy | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 19:1083-1103 |
| doi: | 10.2147/DDDT.S500249 | 研究方向: | 细胞生物学 |
| 疾病类型: | 白血病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
