Reducing Nogo-B Improves Hepatic Fibrosis by Inhibiting BACe1-Mediated Autophagy.

降低 Nogo-B 水平可通过抑制 BACe1 介导的自噬来改善肝纤维化

阅读:5
作者:Gao LiLi, Zhuang YingJie, Liu ZhengYi
BACKGROUND: Hepatic fibrosis (HF) is a histopathological change in the process of long-term liver injury caused by cytokine secretion and internal environment disturbance, resulting in excessive liver repair and fiber scar. Nogo-B protein is widely distributed in peripheral tissues and organs and can regulate the migration of endothelial cells by activating TGF-β1 in vascular remodeling after injury. Nogo-B has been shown to promote organ fibrosis. This study was to determine the role of Nogo-B in HF. METHODS: An HF model was built by intraperitoneal injections with 20% carbon tetrachloride. Localization of Nogo-B was detected by FISH. The interaction between Nogo-B and BACE1 was confirmed by Co-IP. Autophagy flux was analyzed using tandem mRFP-GFP-LC3 fluorescence microscopy, electron microscopy, and western blotting. Detection of serum AST and ALT and H&E staining were utilized to detect the degree of liver injury. The HF was evaluated by Masson trichromatic staining. RT-qPCR, western blotting, and immunofluorescence were employed to detect relevant indicators. RESULTS: Reducing Nogo-B suppressed AST and ALT levels, the accumulation of collagen I and α-SMA, and expressions of pro-fibrotic genes in mouse liver. BACE1 was a potential downstream target of Nogo-B. Nogo-B was upregulated in TGF-β1-activated hepatic stellate cells (HSCs). Knocking down Nogo-B caused the downregulation of pro-fibrotic genes and inhibited viability of HSCs. Nogo-B knockdown prevented CCL4-induced fibrosis, accompanied by downregulation of extracellular matrix. Nogo-B inhibited HSC autophagy and increased lipid accumulation. BACE1 knockdown inhibited HSC autophagy and activation in LX-2 cells. CONCLUSION: Nogo-B knockdown prevents HF by directly inhibiting BACe1-mediated autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。