Senolysis by GLS1 Inhibition Ameliorates Kidney Aging by Inducing Excessive mPTP Opening Through MFN1.

GLS1抑制引起的衰老细胞清除可通过MFN1诱导mPTP过度开放来改善肾脏衰老

阅读:7
作者:Chen Yuting, Zhao Nan, Zhang Yu, Chen Xueqi, Chen Yi, Wang Yifan, Wu Jianqing, Zhao Weihong
Cellular senescence is a pivotal contributor to aging and age-related diseases. The targeted elimination of senescent cells, known as senolysis, has emerged as a promising therapeutic strategy for mitigating these conditions. Glutaminase 1 (GLS1), a key enzyme in the glutaminolysis pathway, has been implicated in various cellular senescence processes. However, its specific role in senescent renal tubular epithelial cells (TECs) remains unclear. This study investigates the role and underlying mechanisms of GLS1 in senescent TECs. Using d-galactose (d-gal)-induced senescence of HK-2 cells, we found that GLS1 inhibition eliminated senescent TECs by promoting excessive mitochondrial permeability transition pore (mPTP) opening. Mechanistically, the excessive mPTP opening is associated with the upregulation of mitofusin 1 (MFN1). Inhibition of GLS1 in d-gal-treated HK-2 cells induced a shift in mitochondrial dynamics from fission to fusion, accompanied by a significant increase in MFN1 expression. Knocking down MFN1 reduced the mPTP opening and the expression of mPTP-related genes (PPIF, VDAC, and BAX) in cells co-treated with d-gal and the GLS1 inhibitor BPTES. Moreover, treatment of aged mice with BPTES specifically eliminated senescent TECs and ameliorated age-associated kidney disease. These findings reveal that GLS1 inhibition eliminate senescent TECs by promoting excessive mPTP opening, suggesting that targeting GLS1 may be a novel senolytic strategy for alleviating aging-related kidney diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。