The death of human nucleus pulposus derived stem cells (NPSCs) is a key factor affecting the endogenous repair capability and degeneration of intervertebral discs (IVD). ASIC1a is thought to be closely associated with cells destiny in IVD degeneration (IVDD). However, its physiological and pathological roles in human NPSCs are unclear. In this study, we found that the content of ASIC1a increased with IVDD in both rats and human discs. In acidosis-treated NPSCs, the expression level of ASIC1a increased, accompanied by inhibition of cells viability and activation of mitochondrial apoptotic pathway. Additionally, ASIC1a overexpression activated the mitochondrial apoptotic pathway and increased the level of cellular and mitochondrial ROS in human NPSCs. Moreover, we demonstrated that the dysfunction of SIRT3-regulated mitochondrial redox homeostasis was involved in ASIC1a overexpression-induced apoptosis in human NPSCs. The in vivo experiments also demonstrated that the ASIC1a/SIRT3 pathway was involved in IVDD. Overall, these findings showed that ASIC1a disrupted mitochondrial function and aggravated mitochondrial oxidative stress by inhibiting the expression of SIRT3, which activated human NPSC apoptosis and aggravated IVDD. These findings provide new insights for the development of innovative treatment strategies for IVDD.HighlightsAcidosis inhibited human NPSCs activity and promoted apoptosis via mitochondria.ASIC1a promoted acidosis-induced apoptosis of human NPSCs.ASIC1a inhibited SIRT3 expression, aggravating mitochondrial oxidative stress.ASIC1a promoted IVDD via mitochondrial oxidative stress and apoptosis.
ASIC1a Promotes nucleus pulposus derived stem cells apoptosis through modulation of SIRT3-dependent mitochondrial redox homeostasis in intervertebral disc degeneration.
ASIC1a 通过调节 SIRT3 依赖的线粒体氧化还原稳态,促进椎间盘退变中髓核来源干细胞的凋亡
阅读:18
作者:Zhang Zhi-Gang, Kang Liang, Zhou Lu-Ping, Wang Yan-Xin, Jia Chong-Yu, Zhao Chen-Hao, Zhang Bo, Wang Jia-Qi, Zhang Hua-Qing, Zhang Ren-Jie, Shen Cai-Liang
| 期刊: | Redox Report | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 Dec;30(1):2504120 |
| doi: | 10.1080/13510002.2025.2504120 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
