DLAT activates EMT to promote HCC metastasis by regulating GLUT1-mediated aerobic glycolysis.

DLAT 通过调节 GLUT1 介导的有氧糖酵解激活 EMT,从而促进 HCC 转移

阅读:6
作者:Yin Qian, Yao Yinye, Ni Jiaojiao, Zhang Yiwen, Wu Jia, Zeng Hui, Wu Wei, Zhuo Wei, Ying Jieer, Li Jingjing
BACKGROUND: Metabolic reprogramming is a hallmark of hepatocellular carcinoma (HCC) progression, driving aberrant cellular processes in response to pathological stimuli. While dihydrolipoyl transacetylase (DLAT) has been implicated in the development of various cancers, its specific role and underlying mechanisms in HCC remain unclear. This study aimed to investigate the expression, function, and mechanistic impact of DLAT in HCC. METHODS: A comprehensive analysis was conducted using RNA sequencing data, tissue microarrays, in vitro and in vivo functional assays, and mechanistic studies to evaluate DLAT expression, its functional role in tumor progression, and associated molecular pathways in HCC. RESULTS: Our study revealed a significant upregulation of DLAT expression in HCC, which was linked to a poor prognosis. Furthermore, we discovered that DLAT facilitated tumor metastasis by driving metabolic reprogramming in HCC cells. Mechanistically, DLAT was found to enhance glucose transporter 1 (GLUT1) expression via H3K18 acetylation, thereby promoting aerobic glycolysis and epithelial-to-mesenchymal transition (EMT), which subsequently augmented metastasis of HCC both in vitro and in vivo. Finally, we confirmed a positive correlation between DLAT and GLUT1 expression in HCC tissues. CONCLUSIONS: These findings establish DLAT as a key regulator in HCC progression and suggest its potential as a promising predictive biomarker and therapeutic target for improving HCC diagnosis and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。