Integrated transcriptomics and metabolomics analysis reveal the regulatory mechanisms underlying the combined effects of heat and glucose starvation on carotenoid biosynthesis in Rhodotorula glutinis YM25079.

整合转录组学和代谢组学分析揭示了热和葡萄糖饥饿对谷氨酸红酵母YM25079中类胡萝卜素生物合成的综合影响的调控机制

阅读:18
作者:Huang Xingyu, Guo Caina, Huang Xiaolan, He Meixia, Fan Jingdie, Chen Yuan, Qiu Jingwen, Zhang Qi
Rhodotorula glutinis is an important oleaginous yeast that can synthesize various valuable compounds, including carotenoids, lipids, and exopolysaccharides. The effect of combined heat stress and glucose starvation on carotenoid biosynthesis in R. glutinis was investigated in this study. Carotenoid production in R. glutinis was promoted by heat stress, and this effect was further enhanced when glucose starvation was applied to the strain. The results of multiomics analysis revealed that the effects of heat stress and glucose starvation on promoting carotenoid biosynthesis appeared to be additive, with the combined stress leading to a further increase in reactive oxygen species (ROS) levels and a reduction in enzymatic antioxidant capacity, while carotenoid biosynthesis was prioritized simultaneously. The key responses of R. glutinis to combined stress include the regulation of the cell cycle and energy metabolism, maintenance of membrane integrity, an increase in ROS scavenging capacity, and non-enzymatic antioxidant activity. Additionally, several candidate genes and metabolites associated with the combined stress response were identified. To summarize, we provided new insights into optimizing fermentation processes for increased carotenoid production in Rhodotorula glutinis and established a molecular basis for further genetic engineering to increase carotenoid yield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。