The Transcriptomic Signature of Donkey Ovarian Tissue Revealed by Cross-Species Comparative Analysis at Single-Cell Resolution.

通过单细胞分辨率的跨物种比较分析揭示驴卵巢组织的转录组特征

阅读:17
作者:Tian Yu, Niu Yilin, Zhang Xinhao, Wang Tao, Tian Zhe, Zhang Xiaoyuan, Guo Jiachen, Ge Wei, Liu Shuqin, Sun Yujiang, Li Jianjun, Shen Wei, Wang Junjie, Zhang Teng
Donkeys (Equus asinus) hold significant agricultural value in China, particularly for their hides and meat, which possess notable medicinal and dietary importance. However, their reproductive efficiency remains suboptimal compared with other livestock. Ovarian function is a key determinant of fertility, yet the molecular mechanisms underlying donkey ovarian biology remain largely unexplored. To address this gap, we performed single-cell RNA sequencing of donkey ovaries, generating a high-resolution transcriptomic atlas comprising 17,423 cells. Cross-species comparative analysis revealed a high degree of evolutionary conservation in core ovarian cell types, including endothelial, epithelial, immune, and smooth muscle cells, among vertebrates. In contrast, granulosa and theca cells exhibited distinct transcriptional profiles across species, reflecting lineage-specific adaptations. Notably, we identified key genes with donkey-specific expression patterns, including NR3C1 in endothelial cells, LIPE in granulosa cells, and DHRS9 in theca interna cells. Furthermore, an in vitro cumulus-oocyte complex model demonstrated the critical role of GATM in mammalian oocyte maturation. Collectively, these findings provide a comprehensive characterization of ovarian cell-type conservation and species-specific adaptations, offering key molecular insights into the mechanisms underlying cross-species differences in reproductive efficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。