Ribonuclease P (RNase P) plays a vital role in the maturation of tRNA across bacteria, archaea, and eukaryotes. However, how RNase P assembles various components to achieve specific cleavage of precursor tRNA (pre-tRNA) in different organisms remains elusive. In this study, we employed single-molecule fluorescence resonance energy transfer to probe the dynamics of RNase P from E. coli (Escherichia coli) and Mja (Methanocaldococcus jannaschii) during pre-tRNA cleavage by incorporating five Cy3-Cy5 pairs into pre-tRNA and RNase P. Our results revealed significant differences in the assembly and catalytic mechanisms of RNase P between E. coli and Mja at both the RNA and protein levels. Specifically, the RNA of E. coli RNase P (EcoRPR) can adopt an active conformation that is capable of binding and cleaving pre-tRNA with high specificity independently. The addition of the protein component of E. coli RNase P (RnpA) enhances and accelerates pre-tRNA cleavage efficiency by increasing and stabilizing the active conformation. In contrast, Mja RPR is unable to form the catalytically active conformation on its own, and at least four proteins are required to induce the correct folding of Mja RPR. Mutation experiments suggest that the functional deficiency of Mja RPR arises from the absence of the second structural layer, and proper intermolecular assembly is essential for Mja RNase P to be functional over a broad temperature range. We propose models to illustrate the distinct catalytic patterns and RNA-protein interactions of RNase P in these two organisms.
Divergent molecular assembly and catalytic mechanisms between bacterial and archaeal RNase P in pre-tRNA cleavage.
细菌和古细菌 RNase P 在 pre-tRNA 切割中的分子组装和催化机制存在差异
阅读:5
作者:Liang Xiaoge, Chen Dian, Su Aimin, Liu Yu
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2024 | 起止号: | 2024 Oct 22; 121(43):e2407579121 |
| doi: | 10.1073/pnas.2407579121 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
