Human tau promotes Warburg effect-like glycolytic metabolism under acute hyperglycemia conditions.

人类 tau 蛋白在急性高血糖条件下促进类似 Warburg 效应的糖酵解代谢

阅读:7
作者:Yao Jinyi, Li Keying, Fu Zhenli, Zheng Jingjing, Chen Zicong, Xu Jiahao, Lai Guoqing, Huang Yaomin, Huang Jinsheng, You Guanying, Han Shuangxue, He Zhijun, Liu Qiong, Li Nan
The neurofilaments formed by hyperphosphorylated tau is a hallmark of tauopathies. However, the biological functions of tau and the physiological significance of its phosphorylation are still not fully understood. By using human tau (441 a.a.) transgenic (hTau) mice, murine tau KO mice, and C57BL/6J (C57) mice, unexpectedly, we found that under acute hyperglycemia conditions, JNK but not previously reported GSK3β mediated tau phosphorylation. Moreover, Akt, the inhibitory kinase upstream of GSK3β, was activated in a tau-dependent manner. Furthermore, under acute high glucose conditions, the presence of human tau significantly augmented Akt activation but inhibited 4E-BP1 phosphorylation simultaneously, indicating that human tau is also involved in regulating the alternative activation of mTORC1/2. By comparing the hippocampal membrane-associated proteome, we found that human tau influenced the homeostasis of protein-membrane association under acute hyperglycemia conditions. Of note, with respect to C57 and Tau KO mice, the membrane association of oxidative phosphorylation-related proteins was impeded by human tau in the hippocampus. In vitro study consistently showed that aerobic glycolysis was promoted in the presence of human tau under high glucose conditions, which maintained the ratio of NAD(+)/NADH. On the other hand, human tau restricted the level of oxidative phosphorylation, modulated the activity of SDH, and reduced ROS production upon high glucose challenging. In summary, the current study revealed that human tau played an important role in regulating glycolytic metabolism under acute hyperglycemia conditions, which is similar with the Warburg effect, through influencing the homeostasis of protein-membrane association.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。