Inflammatory bowel disease (IBD) is a relapsing disorder characterized by uncontrolled chronic inflammation of the gastrointestinal tract, posing a significant therapeutic challenge owing to the limited efficacy and undesirable side effects of current therapeutic options. A key pathological hallmark of IBD is the excessive production of reactive oxygen species (ROS). Hence, therapeutic strategies aimed at reducing ROS levels are promising for relieving these inflammatory conditions. Vitamin C-a natural nutrient for the human body-is well known for its potent antioxidant effects. However, the clinical development of vitamin C as a therapeutic drug has been hindered by its poor stability, rapid metabolism, and inadequate tissue accumulation. Herein, we report that the bioavailability of vitamin C can be enhanced by chemically reprogramming it with a small panel of long-chain fatty acids that aid in the aqueous self-assembly of the resulting drug conjugates to create self-deliverable nanoassemblies, enhancing their inflammation disease-oriented delivery and cellular uptake. In mice with dextran sulfate sodium-induced colitis, the optimal vitamin C-lipid nanoassemblies preferentially accumulated in inflamed colonic tissues following systemic administration and substantially ameliorated disease severity. We extended this strategy to incorporate the clinically approved glucocorticoid budesonide into the vitamin C nanosystem, facilitating a synergistic combination. In the chronic colitis model, the combination treatment reduced inflammation without compromising global immunity. Mechanistically, the treatment modulated the intestinal inflammatory microenvironment and altered the immune cell landscape, partly through regulation of the gut microbiome. Given its anticipated negligible side effects, this novel nanoassembly platform leveraging small-molecule lipidation may become a promising therapeutic for treating various inflammatory diseases.
Reduction of colitis in mice by chemically programmed supramolecular nanoassemblies of vitamin-lipid conjugates.
利用化学编程的维生素-脂质缀合物超分子纳米组装体减轻小鼠结肠炎
阅读:6
作者:Xian Shiyun, Meng Fanchao, Chen Xiaona, Zhu Liqing, Wang Hangxiang
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 25; 23(1):247 |
| doi: | 10.1186/s12951-025-03322-0 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
