BACKGROUND: Prolonging the duration of photodynamic therapy (PDT) enhances the level of reactive oxygen species (ROS), thereby facilitating tumor ablation. However, our findings indicated that excessive ROS not only induces epithelial-mesenchymal transition (EMT) but also creates an immunosuppressive microenvironment in tumor, thereby triggering tumor metastasis. METHODS: We initially developed neutrophil membrane hybrid liposomes (NLs) that can specifically target inflamed tumor tissues following PDT. Then, we utilized NLs to encapsulate the antioxidant nanozyme FeGA and the antiplatelet drug Lysine Acetylsalicylate (LAS), resulting in the formulation NLASF. RESULTS: Experimental results demonstrated that FeGA effectively scavenges ROS, thereby reversing the immunosuppressive microenvironment induced by prolonged PDT. Furthermore, the incorporation of LAS effectively disrupts the interaction between tumor cells and platelets, mitigating tumor EMT and inhibiting hematogenous tumor metastasis. In a breast cancer mouse model, we observed that treatment with NLASF led to a near-complete suppression of tumor lung metastasis following the prolonged PDT. Additionally, the in vivo application of NLASF did not result in any blood toxicity or organ toxicity, highlighting its significant advantages over the free drugs group. CONCLUSIONS: This study provides a novel approach to enhance the efficacy of PDT and successfully suppress PDT-mediated tumor metastasis.
Inflammation-targeted nanomedicine prevents tumor metastasis following photodynamic therapy by reversing epithelial-mesenchymal transition and ROS-mediated immunosuppression.
炎症靶向纳米药物通过逆转上皮-间质转化和 ROS 介导的免疫抑制,防止光动力疗法后的肿瘤转移
阅读:4
作者:Song Zhengwei, Sun Quanwei, Yang Wenshuo, Li Yunlong, Hu Chaoyu, Chen Chen, Liu Kang, Shen Wei, Yang Ye, Yin Dengke
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 4; 23(1):271 |
| doi: | 10.1186/s12951-025-03332-y | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
