FOXM1 boosts glycolysis by upregulating SQLE to inhibit anoikis in breast cancer cells.

FOXM1 通过上调 SQLE 来促进糖酵解,从而抑制乳腺癌细胞的失巢凋亡

阅读:24
作者:Xu Mei, Pan Guozhi, Zhang Qian, Huang Jiangming, Wu Yehua, Ashan Yashengjiang
BACKGROUND: Resisting anoikis is a prerequisite for cancer to spread and invade and a major cause of cancer-related deaths. Yet, the intricate mechanisms of how cancer cells evade anoikis remain largely unknown. There is a significant need to explore how these mechanisms play out in breast cancer (BC). METHODS: Bioinformatics analysis revealed the expression levels of SQLE and FOXM1 in BC tissue, along with their correlation. The enrichment pathways of SQLE were also explored. qPCR detected the expression of SQLE and FOXM1 in BC cells. CCK-8 assessed cell viability, while flow cytometry measured anoikis. Western blot was employed to examine the protein expression of key genes in glycolytic metabolism and apoptosis-related proteins. Extracellular acidification rate was quantified, and corresponding kits evaluated glucose consumption, lactate production, and adenosine triphosphate levels in cells. Dual-luciferase reporter assays and chromatin immunoprecipitation tests unveiled the binding relationship between FOXM1 and SQLE. RESULTS: SQLE was found to be highly expressed in BC and enriched in pathways associated with anoikis and glycolysis. SQLE curbed anoikis in BC via the aerobic glycolysis pathway. There was also a direct binding between FOXM1 and SQLE and a positive correlation between their expression. Recovery experiments substantiated that FOXM1 targeted SQLE to suppress anoikis in BC cells. CONCLUSION: FOXM1 upregulates SQLE, which in turn mediates glycolysis to suppress anoikis in BC. The FOXM1/SQLE axis is a promising therapeutic target for BC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。