Folate metabolism-associated CYP26A1 is a clinico-immune target in colorectal cancer

叶酸代谢相关CYP26A1是结直肠癌的临床免疫靶点

阅读:2
作者:Yifei Zhu # ,Teng Zhou # ,Yao Zheng ,Yanxi Yao ,Mingxi Lin ,Cheng Zeng ,Yuxin Yan ,Yifei Zhou ,Dou-Dou Li ,Jian Zhang
Folic acid plays a crucial role in cellular regulation and metabolism, commonly included in dietary supplements. Despite this, its involvement in colorectal cancer (CRC), particularly in metabolic pathways and immune evasion, remains poorly understood. We developed the FMRG_score system using machine learning algorithms on TCGA and GEO data to assess modification patterns influencing clinical outcomes and immune characteristics in CRC. The system's reliability was validated across multiple external immunotherapy cohorts. We examined associations between FMRG-related features and clinical traits, mutation profiles, biological functions, immune infiltration, therapy responses, and drug sensitivities. By integrating in vitro and in vivo experiments with bioinformatics, we built a nine-gene risk model linked to folate metabolism for CRC prognosis. Notably, CYP26A1, a key gene in the model, was upregulated in CRC tissues, promoting cell proliferation, migration, invasion, and contributing to an immunosuppressive tumor microenvironment. Significant differences in clinical traits, immune infiltration, checkpoint expression, therapy response, and drug sensitivity were observed between risk groups. This folate-based scoring system provides a novel tool for evaluating CRC prognosis, tumor microenvironment, and response to immunotherapy. We also propose CYP26A1 as a potential oncogene in CRC, offering new therapeutic insights.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。