Salinomycin (SAL), originally identified for its potent antibacterial properties, has recently garnered attention for its remarkable activity against a variety of cancer types. Beyond its direct cytotoxic effects on cancer cells, SAL can also enhance the efficacy of anti-CD20 immunotherapy in B-cell malignancies, both in vitro and in vivo. Despite these promising findings, the precise molecular mechanisms underlying SAL's anticancer action remain poorly understood. Here, we demonstrate that even at low concentrations (0.25-0.5 mM), SAL disrupts mitochondrial membrane potential and induces oxidative stress in Burkitt lymphoma. Further investigations uncovered that SAL shifts cellular metabolism from mitochondrial respiration to aerobic glycolysis. Additionally, metabolomic profiling identified SAL-induced arginine depletion as a key metabolic alteration. These findings provide new insights into SAL's multifaceted mechanisms of action and support its potential as an adjunctive therapy in cancer treatment.
Low-Dose Salinomycin Alters Mitochondrial Function and Reprograms Global Metabolism in Burkitt Lymphoma.
低剂量盐霉素可改变伯基特淋巴瘤的线粒体功能并重编程其整体代谢
阅读:5
作者:Zdanowicz Aleksandra, Ilchenko Oleksandr, Ciechanowicz Andrzej, Chi Haoyu, Struga Marta, Pyrzynska Beata
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 27; 26(11):5125 |
| doi: | 10.3390/ijms26115125 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
