Non-Specific Particle Formation During Extracellular Vesicle Labelling With the Lipophilic Membrane Dye PKH26.

使用亲脂性膜染料 PKH26 对细胞外囊泡进行标记时,非特异性颗粒的形成

阅读:5
作者:Haines Laurel A, Baeckler Alex A, Schofield Sophi J, Palmer Eric P, Guilliams Bradley F, Meyers Melinda A, Regan Daniel P
Current approaches for the fluorescent labelling of extracellular vesicles (EVs) have been reported to produce widely variable and controversial results, highlighting a significant need for validated, reproducible labelling methods to advance the field of EV research. Lipophilic membrane dyes are commonly used but have been shown to produce non-specific fluorescent particles that are indistinguishable from labelled EVs, confounding experimental results. We aimed to distinguish conditions that can either promote or reduce the formation of non-specific dye particles when using the prototypical lipophilic membrane dye PKH26. We optimised a labelling approach that minimises the production of non-specific dye particles by altering buffer conditions during staining and validated this method across cell-based and in vivo systems of EV biodistribution. To do this, we specifically isolated small EVs using ultrafiltration and size exclusion chromatography and validated sample purity and post-isolation processing steps. We then used single-EV spectral flow cytometry and transmission electron microscopy to investigate the impact of four different buffer conditions on PKH26 non-specific particle formation. We also determined the extent to which non-specific PKH26 particles were detectable in cell-based assays and in vivo within mouse lymph nodes using flow cytometry, immunofluorescence, and intravital imaging. By optimising buffer conditions to eliminate additional protein, we were able to minimise the formation of dye aggregates while maintaining efficient EV labelling, producing a much higher signal-to-noise ratio both in vitro and in vivo. We also demonstrate that failure to include proper vehicle controls can have significant implications on experimental results, leading to false positive data. This work emphasizes the importance of adequately benchmarking EV labelling approaches as it is essential for accurate evaluation of EV trafficking in physiologic and pathologic states.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。