High-Throughput Single-Cell Proteomics of In Vivo Cells.

体内细胞的高通量单细胞蛋白质组学

阅读:14
作者:Karagach Shiri, Smollich Joachim, Atrakchi Ofir, Mohan Vishnu, Geiger Tamar
Single-cell mass spectrometry-based proteomics (SCP) can resolve cellular heterogeneity in complex biological systems and provide a system-level view of the proteome of each cell. Major advancements in SCP methodologies have been introduced in recent years, providing highly sensitive sample preparation methods and mass spectrometric technologies. However, most studies present limited throughput and mainly focus on the analysis of cultured cells. To enhance the depth, accuracy, and throughput of SCP for tumor analysis, we developed an automated, high-throughput pipeline that enables the analysis of 1536 single cells in a single experiment. This approach integrates low-volume sample preparation, automated sample purification, and LC-MS analysis with the Slice-PASEF method. Integration of these methodologies into a streamlined pipeline led to a robust and reproducible identification of more than 3000 proteins per cell. We applied this pipeline to analyze tumor macrophages in a murine lung metastasis model. We identified over 1700 proteins per cell, including key macrophage markers and more than 500 differentially expressed proteins between tumor and control macrophages. PCA analysis successfully separated these populations, revealing the utility of SCP in capturing biologically relevant signals in the tumor microenvironment. Our results demonstrate a robust and scalable pipeline poised to advance single-cell proteomics in cancer research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。