A novel cationic liposome-formulated toll like receptor (TLR) 7/8 agonist enhances the efficacy of a vaccine against fentanyl toxicity

一种新型阳离子脂质体包裹的Toll样受体(TLR)7/8激动剂可增强抗芬太尼毒性疫苗的疗效。

阅读:5
作者:Fatima A Hamid ,Nguyet-Minh Nguyen Le ,Daihyun Song ,Hardik Amin ,Linda Hicks ,Sophia Bird ,Karthik Siram ,Brooke Hoppe ,Borries Demeler ,Jay T Evans ,David J Burkhart ,Marco Pravetoni
The U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade. Since 2020, over 100,000 fatal drug overdoses have been reported annually, and 75% of those involved fentanyl and its analogs (F/FA). Accelerating the translation of innovative, effective, and safe treatments is needed to augment existing measures to counteract such a crisis. Active immunization against F/FA and other opioids represents a promising therapeutic and prophylactic strategy for opioid use disorder (OUD) and opioid-induced overdose toxicity. Previously we demonstrated that a vaccine against F/FA comprising a fentanyl-based hapten (F) conjugated to the diphtheria cross-reactive material (CRM), admixed with the novel lipidated toll-like receptor 7/8 (TLR7/8) agonist INI-4001 adsorbed on Alhydrogel® (alum) induced high-affinity fentanyl-specific polyclonal antibodies that protected against fentanyl-induced pharmacological effects in mice, rats, and mini-pigs. Here, INI-4001 was formulated into liposomes with different surface charges, and their impact on F-CRM adsorption, INI-4001 adjuvanticity, and vaccine efficacy were explored. Additionally, as the role of innate immunity in mediating the efficacy of addiction vaccines is largely unknown, we tested these formulations on the activation of innate immunity in vitro. Cationic INI-4001 liposomes surpassed other liposomal and aluminum-based formulations of INI-4001 by enhancing the efficacy of fentanyl vaccines and protecting rats against bradycardia and respiratory depression by blocking the distribution of fentanyl to the brain. Fentanyl vaccines adjuvanted with either cationic INI-4001 liposomes or the aqueous INI-4001 adsorbed to alum induced significant surface expression of co-stimulatory molecules and maturation markers in a murine dendritic cell line (JAWS II), while the former was superior in enhancing the macrophages surface expression of CD40, CD86 and inducible nitric oxide synthase (iNOS), indicative of maturation and activation. These results warrant further investigation of liposome-based formulations of TLR7/8 agonists for improving the efficacy of vaccines targeting F/FA and other drug targets of public health interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。