Enhancing facial nerve regeneration with scaffold-free conduits engineered using dental pulp stem cells and their endogenous, aligned extracellular matrix.

利用牙髓干细胞及其内源性排列的细胞外基质构建的无支架导管,增强面神经再生

阅读:5
作者:Drewry Michelle D, Shi Delin, Dailey Matthew T, Rothermund Kristi, Trbojevic Sara, Almarza Alejandro J, Cui Xinyan T, Syed-Picard Fatima N
Objective. Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated.Approach. Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues.Main results. In vitroanalyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. Significance. This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。