DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress

增殖应激后,DNA甲基化驱动造血干细胞衰老表型。

阅读:1
作者:Hagai Yanai ,Taylor McNeely ,Saipriya Ayyar ,Michael Leone ,Le Zong ,Bongsoo Park ,Isabel Beerman

Abstract

Aging of hematopoietic stem cells (HSCs) is implicated in various aging phenotypes, including immune dysfunction, anemia, and malignancies. The role of HSC proliferation in driving these aging phenotypes, particularly under stress conditions, remains unclear. Therefore, we induced forced replications of HSCs in vivo by a cyclical treatment with low-dose fluorouracil (5FU) and examined the impact on HSC aging. Our findings show that proliferative stress induces several aging phenotypes, including altered leukocyte counts, decreased lymphoid progenitors, accumulation of HSCs with high expression of Slamf1, and reduced reconstitution potential, without affecting stem cell self-renewal capacity. The divisional history of HSCs was imprinted in the DNA methylome, consistent with functional decline. Specifically, DNA methylation changes included global hypermethylation in non-coding regions and similar frequencies of hypo- and hyper-methylation at promoter regions, particularly affecting genes targeted by the PRC2 complex. Importantly, initial forced replication promoted DNA damage repair accumulated with age, but continuous proliferative stress led to the accumulation of double-strand breaks, independent of functional decline. Overall, our results suggest that HSC proliferation can drive some aging phenotypes primarily through epigenetic mechanisms, including DNA methylation changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。