Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

利用microRNA介导的基因沉默技术对CAR T细胞进行多重基因工程改造

阅读:9
作者:Golinelli Giulia, Scholler John, Roussel-Gervais Audrey, Å akić Antonija, Ilmjärv Sten, Song Decheng, Gabunia Khatuna, Ji Mei, Fan Ting J, Gupta Aasha, Deshmukh Mansi, Berjis Abdulla, Cuoghi Costantini Riccardo, Apodaca Kimberly, Sheppard Neil C, Kili Sven, Dominici Massimo, Alessandrini Marco, June Carl H, Levine Bruce L
BACKGROUND: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing. METHODS: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells. The efficacy of this approach was compared to CD3ζ and β2-microglobulin (β2M) CRISPR/Cas9 knockout (KO) cells. miRNA-expressing cassettes were incorporated into M5CAR lentiviral vectors, enabling combined gene silencing and CAR expression. Antitumor activity was evaluated using in vitro assays and in vivo pancreatic ductal adenocarcinoma models. RESULTS: Silenced (S) M5CAR T cells retained antitumor functionality comparable to, and in some cases exceeding, that of KO cells. In vivo, S M5CAR T cells achieved tumor control with higher persistence and superior metastasis prevention. In vitro assays demonstrated enhanced resistance to alloreactive natural killer (NK) cells and peripheral blood mononuclear cells (PBMCs). CONCLUSIONS: Titratable multiplex gene silencing via targeted miRNAs offers an alternative to gene editing for CAR T cells, with potential advantages in potency, persistence, metastasis prevention, and immune evasion for allogeneic products. This strategy may overcome tumor-induced immunosuppression while avoiding the risks associated with DNA double-strand breaks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。