Acute lung injury (ALI) is a life-threatening inflammatory disease with high morbidity and mortality. It is urgent to develop more effective therapeutic strategies against ALI. Phosphatidylserine (PtdSer) expressed on the surface of apoptotic cells not only allows for macrophage binding and recognition but also drives anti-inflammatory signaling within the macrophage. In this study, we designed an apoptotic cell-mimicry nanoparticle by decorating synthetic PtdSer on the outer face of nanoparticles. The results indicated that PtdSer-decorated poly(lactic-co-glycolic acid) nanoparticles (PSNPs) showed anti-inflammatory properties and increased macrophage phagocytosis in relative to the nondecorated poly(lactic-co-glycolic acid nanoparticles. Dexamethasone-loaded PSNPs exhibited superior anti-inflammatory activity on macrophages in vitro. In vivo studies also showed that PtdSer decoration increased the accumulation of nanoparticles in lung macrophages after pulmonary administration. Accumulation of dexamethasone-loaded PSNPs in lung macrophages effectively reduced inflammation in inflamed lungs and further alleviated ALI syndromes. In conclusion, PtdSer decoration not only endows the anti-inflammatory function to nanocarriers but also potentiates its macrophage targeting in the inflamed microenvironment, which offers an ideal drug delivery platform for ALI therapy.
Phosphatidylserine-decorated delivery platform helps alleviate acute lung injury via potentiating macrophage targeting
磷脂酰丝氨酸修饰的递送平台通过增强巨噬细胞靶向作用来帮助缓解急性肺损伤。
阅读:3
作者:Yue Li ,Hu Li ,Zhiwei Hu ,Yayue Zhang ,Xuran Ding ,Xinjie Huang ,Yabing Hua ,Lin Sun ,Ye Li ,Ziming Zhao ,Yuan He
| 期刊: | Journal of Lipid Research | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 May;66(5):100799. |
| doi: | 10.1016/j.jlr.2025.100799 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
