There is a progressive decline in physiological function with age, and aging is associated with increased susceptibility to injury and infection. However, several reports have indicated that the agility of youth is characterized by transferable rejuvenating molecular factors, as was observed previously in heterochronic parabiosis experiments. These experiments demonstrated a rejuvenating effect of young blood in old animals. There have been several efforts to characterize these youthful or maturation-associated factors in the young blood. In this report, we demonstrate the resilience of young mice, at or before puberty, to polymicrobial sepsis and show an age-dependent effect of small extracellular vesicles (EVs) from plasma on the outcome following sepsis. The EVs from the young mice were cytoprotective, anti-inflammatory, and reduced cellular senescence markers. MicroRNA sequencing of the EVs showed an age-associated signature and identified miR-296-5p and miR-541-5p to progressively reduce their levels in the blood plasma with increasing age. We further show that the levels of these miRNAs decline with age in multiple organs. The miRNAs miR-296-5p and miR-541-5p showed a reparatory effect in an in vitro wound healing model and the miR-296-5p, when given intraperitoneally, reduced mortality in the mouse model of sepsis. In summary, our studies demonstrate that EVs from very young mice have a reparative effect on sepsis, and the reparative factors are likely maturation-dependent. Our observation that miR-296-5p and miR-541-5p are plasma EV constituents that significantly reduce with age and can reduce inflammation suggests a therapeutic potential for these miRNAs in inflammation and age-associated diseases.
Plasma Extracellular Vesicle-Derived miR-296-5p is a Maturation-Dependent Rejuvenation Factor that Downregulates Inflammation and Improves Survival after Sepsis
血浆细胞外囊泡衍生的miR-296-5p是一种成熟依赖性再生因子,可下调炎症并提高脓毒症后的存活率。
阅读:7
作者:Lun Cai ,Parmita Kar ,Yutao Liu ,Xiaogang Chu ,Ashok Sharma ,Tae Jin Lee ,Ali Arbab ,Raghavan Pillai Raju
| 期刊: | Journal of Extracellular Vesicles | 影响因子: | 15.500 |
| 时间: | 2025 | 起止号: | 2025 Apr;14(4):e70065. |
| doi: | 10.1002/jev2.70065 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
