α-Ketoglutarate alleviates the pathogenesis of lupus and inhibits the activation and differentiation of B cells by promoting the expression of CD39

α-酮戊二酸通过促进CD39的表达来减轻狼疮的发病机制并抑制B细胞的活化和分化。

阅读:3
作者:Yangzhe Gao ,Yucai Xiao ,Yuxin Hu ,Lu Yu ,Jiakun Liu ,Zhengyi Zhang ,Tianqi Zhao ,Shuo Zhao ,Lili Zhang ,Yonghong Yang ,Huabao Xiong ,Guanjun Dong
The abnormal activation and differentiation of B cells play an important role in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). Alpha-ketoglutarate (α-KG), a key metabolite in the tricarboxylic acid cycle, has been shown to be involved in the pathogenesis of many diseases by regulating the immune response. However, the role of α-KG in the pathogenesis of SLE, as well as the activation and differentiation of B cells, remains unclear. In this study, we used organic acid-targeted metabolomics to analyze the changes in the levels of 100 organic acids in the serum of SLE patients and healthy controls, and found a significant increase in the α-KG level in SLE patients compared to that in healthy controls. Notably, α-KG significantly could inhibit the activation and differentiation of B cells and alleviate disease progression in lupus-prone mice. Mechanistically, RNA-seq revealed that α-KG upregulated the expression of ENTPD1, which encodes an important immune checkpoint molecule CD39; B-cell-specific loss of ENTPD1 could significantly promote the Toll-like receptors-mediated activation and differentiation of B cells and aggravate the disease conditions of lupus-prone mice. The findings of our study demonstrate that α-KG alleviates the pathogenesis of lupus and inhibits the activation and differentiation of B cells by increasing the expression of CD39. Our findings laid a theoretical foundation for understanding the pathogenesis of SLE. Based on our study, α-KG might be further examined as a drug for the effective treatment of SLE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。