Multiple sclerosis (MS) is a chronic inflammatory CNS disease with heterogeneous manifestation. Prognostic markers for early classification of MS are currently under investigation. Higher diagnostic resolution of cerebrospinal fluid (CSF) has the potential to contribute significantly to patient stratification, which should be especially important for a subgroup of patients with high risk to convert to a progressive disease course. This study aimed to determine whether spectral flow cytometry of CSF cells could identify pathogenic CD4+ T cell subset in MS. Using a two-step approach, we designed a marker panel informed by publicly available transcriptomic datasets from early human MS and our own single-cell RNA sequencing (scRNA-seq) in acute and chronic experimental autoimmune encephalomyelitis (EAE), a murine MS model. Notably, chronic ('phase') markers such as Il7r and Ramp3 (associated with memory T cells), Itgb1 (integrin beta-1) and anti-apoptotic genes like Dnaja1, Hsph1 and Jun/AP-1 were enriched in EAE. These markers reflect pro-survival signalling and tissue-residency characteristics, including CXCR6, CD69 and Bhlhe40, which suggest an adaptation of CD4+ T cells towards persistent neuroinflammatory responses in chronic EAE. This phase-specific marker profile highlights CD4+ T cells as both indicators and contributors to disease progression in EAE. Translating these findings to MS datasets, we found an enrichment of phase-specific markers in CSF cells. Spectral flow cytometry in an independent MS cohort revealed distinct memory and effector T cell subsets, indicating unique CSF signatures in MS. This study underscores the heterogeneity and dynamic changes of CD4+ T cells detectable by spectral flow cytometry, enhancing diagnostic resolution of CSF cells and informing more precise therapeutic strategies for MS.
Mapping CD4+ T cell diversity in CSF to identify endophenotypes of multiple sclerosis.
绘制脑脊液中 CD4+ T 细胞多样性图谱,以识别多发性硬化症的内表型
阅读:5
作者:Crowley Tadhg, Chen Jessy, Rosiewicz Kamil S, Jopp-Saile Lea, Herold Gesche, Biese Charlotte, Fischer Cornelius, Kerkering Janis, Alisch Marlen, Paul Friedemann, Siffrin Volker
| 期刊: | Brain Communications | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Jun 10; 7(3):fcaf231 |
| doi: | 10.1093/braincomms/fcaf231 | 靶点: | CD4 |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
