Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder.

利用自编码器识别儿童急性髓系白血病中的单细胞原始细胞

阅读:4
作者:Driessen Alice, Unger Susanne, Nguyen An-Phi, Ries Rhonda E, Meshinchi Soheil, Kreutmair Stefanie, Alberti Chiara, Sumazin Pavel, Aplenc Richard, Redell Michele S, Becher Burkhard, Rodríguez Martínez María
Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。