Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50â¯% of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.1)/CBX3 (7p15.2) gene fusion in both newly diagnosed and relapsed samples, which is previously unknown in KMT2A/AFDN-rearranged AML patients. Second, the unreported CCDC32/CBX3 gene fusion significantly affected the expression of wild-type genes of both CCDC32 (essential for embryonic development) and CBX3 (an oncogene for solid tumors) during the relapse, as demonstrated by Quantitative PCR analyses. Third, we further confirmed the existence of triple biomarkers - KMT2A/AFDN (AF6, 6q27) rearrangement, the unknown CCDC32 (15q15.1)/CBX3 (7p15.2) gene fusion and chimeric RNA variants (treatment-resistant leukemic blasts harboring distinct breakpoints) in a 21-year-old male patient of rapid relapsed/refractory AML. Most intriguingly, in this work regarding 16 patients, patients 7 and 20 initially showed the KMT2A/AFDN gene fusion; upon relapse, patient 20 did not show this fusion. On the other hand, patient 7 retained the KMT2A/AFDN fusion at diagnosis and during the relapse, only identified by PCR and Sanger's Sequencing, not by cytogenetics. Interestingly, the chimeric CCDC32/CBX3 gene fusion persisted in the 21-year-old male patient over the diagnostic and relapse phases. Most intriguingly, the overexpression of CCDC32/CBX3 fusion gene in AML patient-specific MV4-11 cells confirms the functional validation, providing experimental evidence of the biological impact of the CCDC32/CBX3 fusion on AML pathogenesis and treatment resistance by promoting cell cycle progression, a mechanism through which AML evolves to become treatment-resistant. All these might exhort differential resistance to treatment. Thus, we found that prognostic and predictive triple biomarkers - KRAS mutated, dual fusions (KMT2A/AFDN, CCDC32/CBX3), and chimeric variants - might evolve with a potential oncogenic role of subclonal evolution for poor clinical outcomes.
Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.
探索治疗驱动的预后三重生物标志物的亚克隆演变:KMT2A 重排的急性髓系白血病患者的新型亚型中的双基因融合和嵌合 RNA 变体
阅读:5
作者:Xu Yi, Li Shengwen Calvin, Xiao Jeffrey, Liu Qian, Cherukuri Durga, Liu Yan, Mirshahidi Saied, Xu Jane, Chen Xuelian, Homa Dadrastoussi, Olea Julian, Wu Kaijin, Kelly Kevin R, Sun Fengzhu, Huang Ruihao, Wang Xiaoqi, Wen Qin, Zhang Xi, Ghiuzeli Cristina M, Chong Esther, Abdel-Azim Hisham, Reeves Mark E, Baylink David J, Cao Huynh, Zhong Jiang F
| 期刊: | Drug Resistance Updates | 影响因子: | 21.700 |
| 时间: | 2025 | 起止号: | 2025 Mar;79:101199 |
| doi: | 10.1016/j.drup.2024.101199 | 研究方向: | 肿瘤 |
| 疾病类型: | 白血病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
