Neuroinflammatory Signaling and Immune Cell Infiltration Differ in Brains of Rats Exposed to Space Radiation and Social Isolation.

暴露于太空辐射和社会隔离的大鼠大脑中神经炎症信号和免疫细胞浸润存在差异

阅读:10
作者:Adkins Austin M, Luyo Zachary N M, Boden Alea F, Heerbrandt Riley S, Britten Richard A, Wellman Laurie L, Sanford Larry D
Astronauts on the proposed Mars missions will be exposed to extended periods of social isolation (SI) and space radiation (SR). SI and SR-induced immune dysregulation can result in persistent neuroinflammation and neuronal damage which could negatively impact an astronaut's health and ability to maintain adequate levels of performance. The synergistic effects of combined SI and SR on immune system functionality and the brain remain unknown. Determining how single and combined inflight stressors modulate the immune system is crucial for fully understanding pathways impacting astronaut health and performance. We used ground-based analogs of SI and SR in rodent models to investigate how SI and SR, and their combination (dual flight stressors (DFS)), impact immune cell recruitment into the brain and alter gene expression related to immune signaling and neuroinflammation. We also assessed whether putative phenotypic differences in stress resilience and vulnerability were reflected in neuroinflammatory-related gene expression. SI rats exhibited differences in neuroinflammatory signaling but no differences in infiltrating cells compared to Controls. SR rats exhibited up-regulated gene expression related to cytokine signaling and immune cell recruitment and unexpectedly depleted infiltrating immune cells. Many deficits related to the immune response in the SR animals were attenuated by dual exposure to SI. These data demonstrate significant differences in the effects of spaceflight stressors on immune function and how they may vary with individual stress resilience and vulnerability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。