PERRC: Protease Engineering with Reactant Residence Time Control.

PERRC:利用反应物停留时间控制的蛋白酶工程

阅读:5
作者:Nelson Sage, Gaza Jokent, Ajayebi Seyednima, Masse Ronald, Pho Raymond, Scutero Cianna, Martinusen Samantha, Long Lawton, Menezes Amor, Perez Alberto, Denard Carl
Proteases with engineered specificity hold great potential for targeted therapeutics, protein circuit construction, and biotechnology applications. However, many proteases exhibit broad substrate specificity, limiting their use in such applications. Engineering protease specificity remains challenging because evolving a protease to recognize a new substrate, without counterselecting against its native substrate, often results in high residual activity on the original substrate. To address this, we developed Protease Engineering with Reactant Residence Time Control (PERRC), a platform that exploits the correlation between endoplasmic reticulum (ER) retention sequence strength and ER residence time. PERRC allows precise control over the stringency of protease evolution by adjusting counterselection to selection substrate ratios. Using PERRC, we evolved an orthogonal tobacco etch virus protease variant, TEVESNp, that selectively cleaves a substrate (ENLYFES) that differs by only one amino acid from its parent sequence (ENLYFQS). TEVESNp exhibits a remarkable 65-fold preference for the evolved substrate, marking the first example of an engineered orthogonal protease driven by such a slight difference in substrate recognition. Furthermore, TEVESNp functions as a competent protease for constructing orthogonal protein circuits in bacteria, and molecular dynamics simulations analysis reveals subtle yet functionally significant active site rearrangements. PERRC is a modular dual-substrate display system that facilitates precise engineering of protease specificity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。