Cytomegalovirus (CMV) Epitope-Specific CD4(+) T Cells Are Inflated in HIV(+) CMV(+) Subjects.

HIV(+)CMV(+)患者中巨细胞病毒(CMV)表位特异性CD4(+)T细胞增多

阅读:3
作者:Abana Chike O, Pilkinton Mark A, Gaudieri Silvana, Chopra Abha, McDonnell Wyatt J, Wanjalla Celestine, Barnett Louise, Gangula Rama, Hager Cindy, Jung Dae K, Engelhardt Brian G, Jagasia Madan H, Klenerman Paul, Phillips Elizabeth J, Koelle David M, Kalams Spyros A, Mallal Simon A
Select CMV epitopes drive life-long CD8(+) T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4(+) T cells specific for human CMV (HCMV) are elevated in HIV(+) HCMV(+) subjects. To determine whether HCMV epitope-specific CD4(+) T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4(+) T cells in coinfected HLA-DR7(+) long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4(+) T cells were inflated among these HIV(+) subjects compared with those from an HIV(-) HCMV(+) HLA-DR7(+) cohort or with HLA-DR7-restricted CD4(+) T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4(+) T cells consisted of effector memory or effector memory-RA(+) subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX(3)CR1, CD38, or HLA-DR but less often coexpressed CD38(+) and HLA-DR(+) The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4(+) T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。