Growth of human regulatory CD4(+) T cells is more tightly controlled than effector T cells due to distinctive molecular programming.

由于独特的分子编程,人类调节性 CD4(+) T 细胞的生长比效应 T 细胞受到更严格的控制

阅读:5
作者:Moro Alejandro, Yu Aixin, Nivelo Luis, Gao Zhen, Ban Yuguang, Villarino Alejandro V, Malek Thomas R
Foreign and self-antigens activate CD4(+) conventional and regulatory T cells (Tregs) to promote immunity and tolerance, respectively. These cell populations, which depend on interleukin-2 (IL-2), are being expanded and engineered in vitro for adoptive cell therapy (ACT) for cancer and autoimmunity. Here, we investigate the molecular pathways underlying the in vitro expansion of human CD4(+) Teff and Tregs to TCR/CD28/IL-2 signaling over 12-days. Temporal integration of differential chromatin accessibility and gene expression revealed similar responses over the first 6 days. After this time, T effector (Teff) cells showed greater expansion that was associated with more robust gene activation and chromatin opening that supported increased activation of mTORC1-dependent signaling and a more energetic phenotype. Thus, Tregs are programmed temporally for more limited expansion in vitro that may benefit ACT for cancer but may be a drawback for autoimmunity. These findings may reflect a mechanism to finely tune Treg numbers to maintain homeostasis in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。