Vascularized microphysiological systems and organoids are contemporary preclinical experimental platforms representing human tissue or organ function in health and disease. While vascularization is emerging as a necessary physiological organ-level feature required in most such systems, there is no standard tool or morphological metric to measure the performance or biological function of vascularized networks within these models. Further, the commonly reported morphological metrics may not correlate to the network's biological function-oxygen transport. Here, a large library of vascular network images was analyzed by the measure of each sample's morphology and oxygen transport potential. The oxygen transport quantification is computationally expensive and user-dependent, so machine learning techniques were examined to generate regression models relating morphology to function. Principal component and factor analyses were applied to reduce dimensionality of the multivariate dataset, followed by multiple linear regression and tree-based regression analyses. These examinations reveal that while several morphological data relate poorly to the biological function, some machine learning models possess a relatively improved, but still moderate predictive potential. Overall, random forest regression model correlates to the biological function of vascular networks with relatively higher accuracy than other regression models.
Evaluation of the Morphological and Biological Functions of Vascularized Microphysiological Systems with Supervised Machine Learning.
利用监督式机器学习评估血管化微生理系统的形态和生物学功能
阅读:5
作者:Tronolone James J, Mathur Tanmay, Chaftari Christopher P, Jain Abhishek
| 期刊: | Annals of Biomedical Engineering | 影响因子: | 5.400 |
| 时间: | 2023 | 起止号: | 2023 Aug;51(8):1723-1737 |
| doi: | 10.1007/s10439-023-03177-2 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
