Follicles (Fs)/Germinal Centers (GCs) in tonsils and lymph nodes are dynamic microenvironments where diverse immune cell populations interact for the development of antibody responses against pathogens. The accurate in situ phenotypic analysis of these immune cells is a prerequisite for the comphehensive understanding of GC development. In this study, we explore unsupervised clustering approaches for distinguishing cell populations within F/GCs using marker expression data. We evaluate multiple clustering algorithms and find that k-means clustering provides the most effective separation of distinct cell subsets. Additionally, we investigate the predictive potential of common GC markers (CD3, CD4, CD20 and BCL6) for PD-1 expression, an important immune checkpoint regulator. Our analysis demonstrates that PD-1 expression can be reliably inferred using these markers, suggesting potential applications for automated cell classification in immunological studies. This approach enhances our ability to analyze immune cell heterogeneity and may contribute to improved understanding of GC dynamics in health and disease. Our findings support the use of computational clustering for high-dimensional immune profiling.
Unsupervised Clustering of Cell Populations in Germinal Centers Using Multiplexed Immunofluorescence.
利用多重免疫荧光技术对生发中心细胞群进行无监督聚类
阅读:5
作者:Burgermeister Simon, Orfanakis Michail, Georgakis Spiros, Brenna Cloe, Lindsay Helen, Fenwick Craig, Pantaleo Giuseppe, Gottardo Raphael, Petrovas Constantinos
| 期刊: | Biology-Basel | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 May 11; 14(5):530 |
| doi: | 10.3390/biology14050530 | 方法学: | IF |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
