Secretome and extracellular vesicle signatures in bone marrow-derived mesenchymal stromal cells after expansion in standard and next-generation media.

在标准培养基和新一代培养基中扩增后,骨髓间充质基质细胞的分泌组和细胞外囊泡特征

阅读:6
作者:Grieco Giulio, Piccolo Simona, Ragni Enrico, de Girolamo Laura
Aim: Mesenchymal stem cells (MSCs) are a promising therapeutic strategy for osteoarthritis (OA), largely due to their regenerative potential, which is attributed in part to their secretome. The secretome includes soluble factors and extracellular vesicles (EVs). Given that MSCs are sensitive to various culture conditions, this study aims to investigate the effects of different media supplemented with either fetal bovine serum (FBS) (F), platelet lysate (P), or serum/xeno-free (S/X) on the composition and therapeutic potential of the secretome from bone marrow-derived MSCs (BMSCs). Methods: BMSCs were cultured in F, P, or S/X media, with secretomes collected after starvation. The secretomes were analyzed for soluble factors, EVs, and miRNAs. Inflammatory responses were assessed in an in vitro OA model using inflamed chondrocytes and gene expression was evaluated by qRT-PCR. Results: The secretomes from all conditions exhibited a similar molecular fingerprint. Proteomic analysis identified 98 common proteins encompassing growth factors and inflammatory mediators. EVs showed similar size and phenotype, with a slight difference in CD44 expression in EVs derived from P-expanded MSCs. Despite the high overall similarity, miRNA profiling identified 13 key players, with subtle differences in the miRNA composition of EVs from FBS-expanded BMSCs. All secretomes exhibited anti-inflammatory effects, with the FBS-expanded secretome showing the most pronounced therapeutic potential. Conclusion: The secretomes derived from different culture conditions share key molecular components. EVs may contribute to variations in therapeutic outcomes through their cargo. Optimizing MSC expansion conditions is crucial for enhancing the therapeutic potential of MSC-derived secretomes in OA treatment. Further research is needed to clarify the specific role of factors, miRNAs, and EVs in modulating OA pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。