Inferring the cell-type composition of bulk samples can provide biological insight. While bulk transcriptomics data has been extensively used for this purpose, the use of proteomics data has remained unexplored until recently. This study evaluates computational approaches for estimating immune cell composition using bulk sample proteomics data. Leveraging defined immune cell populations and simulated mixtures, we assess the impact of preprocessing methods and software tools on cell deconvolution outcomes. Our findings demonstrate the feasibility of using proteomics data for cell-type deconvolution, with Pearson correlations for estimated proportions in simulated sample mixtures above 0.9 when employing optimal missing value imputation and reference matrix generation parameters. We further provide an R package, proteoDeconv, to facilitate the preprocessing of proteomics data for deconvolution and parsing of results. This study highlights the feasibility of using proteomics for analyzing cell-type composition in biological samples.
Considerations and Software for Successful Immune Cell Deconvolution Using Proteomics Data.
利用蛋白质组学数据成功进行免疫细胞反卷积的考虑因素和软件
阅读:4
作者:Zamore MÃ¥ns, Junior Sergio Mosquim, Andree Sebastian L, Altunbulakli Can, Lindstedt Malin, Levander Fredrik
| 期刊: | Journal of Proteome Research | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 1; 24(8):3751-3761 |
| doi: | 10.1021/acs.jproteome.4c00868 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
