BACKGROUND: Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Although immune checkpoint inhibitors (ICIs) have brought new treatment options for advanced patients, a considerable proportion still shows limited response. Mitochondrial dysfunction plays a crucial role in tumor development and immune evasion, but its regulatory mechanisms in LUAD immune microenvironment remain unclear. METHODS: We integrated 149 mitochondria-related pathways (1,136 coding proteins) to develop and validate the Mitochondrial Pathway Signature (MitoPS) using machine learning approaches across seven independent LUAD cohorts (n=1,231). The system was systematically compared with 129 published LUAD prognostic signatures and validated in seven immunotherapy cohorts (n=451). Multiomics analysis, immunofluorescence staining, and experimental validation were performed to investigate its molecular mechanism. RESULTS: MitoPS demonstrated consistent predictive performance across validation cohorts, with high scores indicating poor prognosis, outperforming 129 existing prognostic models. In immunotherapy cohorts, MitoPS reliably predicted treatment response and prognosis. Immune microenvironment analysis revealed that low MitoPS scores correlated with higher immune cell infiltration and active immune function. Mechanistic studies identified mitochondria-related gene NDUFB10 as a core gene of MitoPS (r=0.38, p<0.05), where its high expression was significantly associated with immune desert phenotype and worse prognosis. Functional experiments confirmed that NDUFB10 knockdown significantly enhanced ICIs therapy and increased GZMB+CD8+Tâcell infiltration, indicating NDUFB10's crucial role in regulating tumor immune microenvironment and immunotherapy response. CONCLUSION: The MitoPS scoring system reliably predicts prognosis and immunotherapy response in patients with LUAD, providing a novel reference for clinical decision-making. Furthermore, its core gene NDUFB10 regulates tumor immune microenvironment, offering a potential therapeutic target for improving immunotherapy outcomes.
Mitochondrial Pathway Signature (MitoPS) predicts immunotherapy response and reveals NDUFB10 as a key immune regulator in lung adenocarcinoma.
线粒体通路特征(MitoPS)预测免疫疗法反应,并揭示 NDUFB10 是肺腺癌中的关键免疫调节因子
阅读:4
作者:Zhang Pengpeng, Zhang Mengzhe, Liu Jianlan, Zhou Zhaokai, Zhang Lianmin, Luo Peng, Zhang Zhenfa
| 期刊: | Journal for ImmunoTherapy of Cancer | 影响因子: | 10.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 31; 13(7):e012069 |
| doi: | 10.1136/jitc-2025-012069 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
