Chalkophore mediated respiratory oxidase flexibility controls M. tuberculosis virulence.

叶绿素介导的呼吸氧化酶灵活性控制结核分枝杆菌的毒力

阅读:5
作者:Buglino John A, Ozakman Yaprak, Hatch Chad E, Benjamin Anna, Tan Derek S, Glickman Michael S
Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis (Mtb). However, it is unknown how intracellular bacterial pathogens such as Mtb maintain respiration during infection despite the chemical effectors of host immunity. Mtb synthesizes diisonitrile lipopeptides that tightly chelate copper, but the role of these chalkophores in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa (3) respiratory supercomplex under copper limitation. Chalkophore deficiency impairs Mtb survival, respiration to oxygen, and ATP production under copper deprivation in culture, effects that are exacerbated by loss of the heme dependent Cytochrome BD respiratory oxidase. Our genetic analyses indicate that maintenance of respiration is the only cellular target of chalkophore mediated copper acquisition. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is also severely exacerbated by loss of the CytBD respiratory oxidase. We find that the host immune pressure that attenuates chalkophore deficient Mtb is independent of adaptive immunity and neutrophils. These data demonstrate that chalkophores counter host inflicted copper deprivation and highlight a multilayered system by which M. tuberculosis maintains respiration during infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。