Lead exposure is of high prevalence, and over a billion people are chronically exposed to alarming level of lead. Human immune system is highly vulnerable to lead, but the underlying mechanism remains unknown. Using single-cell mass cytometry and mass spectrometry-based proteomics, we performed a panoramic survey of lead targets at both cellular and molecular levels in murine immune system upon chronic lead exposure. We produced a single-cell landscape of lead, thiol metabolism and lead-induced toxicity across all immune cell types. We found that immune cells with extreme thiol metabolism are the most sensitive upon chronic lead exposure. It shows that CD4â+âT cells and neutrophils are the most sensitive to lead, which is due respectively to a molecular mechanism rooted in their characteristic thiol metabolic capacity. Meanwhile, we found that lead accumulation by RBC further inflicted secondary toxicity to RBC phagocytes in spleen, e.g. macrophages and neutrophils. Unlike CD4â+âT cells, which can be rescued by supplementation with thiol chelator, lead toxicity in these phagocytes cannot be effectively mitigated by thiol chelators. Overall, it forms a multiscale panoramic lead-immune system interactome upon chronic lead exposure, which provides valuable information for proactive prevention, therapy formulation and public health evaluation.
Panoramic lead-immune system interactome reveals diversified mechanisms of immunotoxicity upon chronic lead exposure.
铅-免疫系统相互作用组全景研究揭示了慢性铅暴露引起的免疫毒性的多样化机制
阅读:7
作者:Hong Yifan, Ye Tianbao, Jiang Hui, Wang Aiting, Wang Boqian, Li Yiyang, Xie Haiyang, Meng Hongyu, Shen Chengxing, Ding Xianting
| 期刊: | Cell Biology and Toxicology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 May 7; 41(1):81 |
| doi: | 10.1007/s10565-025-10034-6 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
