A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy

构建用于新抗原发现的综合蛋白质基因组学流程,以推进个性化癌症免疫疗法

阅读:5
作者:Florian Huber ,Marion Arnaud ,Brian J Stevenson ,Justine Michaux ,Fabrizio Benedetti ,Jonathan Thevenet ,Sara Bobisse ,Johanna Chiffelle ,Talita Gehert ,Markus Müller ,HuiSong Pak ,Anne I Krämer ,Emma Ricart Altimiras ,Julien Racle ,Marie Taillandier-Coindard ,Katja Muehlethaler ,Aymeric Auger ,Damien Saugy ,Baptiste Murgues ,Abdelkader Benyagoub ,David Gfeller ,Denarda Dangaj Laniti ,Lana Kandalaft ,Blanca Navarro Rodrigo ,Hasna Bouchaab ,Stephanie Tissot ,George Coukos ,Alexandre Harari ,Michal Bassani-Sternberg

Abstract

The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。