RAC2 inhibition enhances tumor sensitivity to NK cell-mediated cytotoxicity.

RAC2 抑制可增强肿瘤对 NK 细胞介导的细胞毒性的敏感性

阅读:4
作者:Guo Hui, Hu Jie, Wang Zining, Xu Feifei, Liu Yongxiang, Cui Lei, Zhang Huanling, Xie Chunyuan, Yao Ruhui, Jin Huan, Guo Zixuan, Wang Tiantian, Li Lin, Lin Yanxun, Wang Xiaojuan, Li Heping, Xia Xiaojun
BACKGROUND: Natural killer (NK) cells are recognized for their ability to kill tumor cells for tumor control, but tumor cells often develop resistance to evade NK cell-mediated cytotoxicity. Identification of molecular mechanisms by which tumor cells evade from NK cell-mediated killing may offer novel therapeutic strategies for potentiating NK-based cancer immunotherapy. METHODS: An in vitro tumor-NK cell co-culture system was employed to identify the most significantly altered genes in tumor cells following NK cell interaction. The cell death rate of tumor cells by NK cell exposure was quantified using flow cytometry. EL4 and HCT116 tumor models in C57BL/6, BALB/c-nu, and NOD/SCID mice were used for evaluating tumor growth differences induced by Rac2 knockdown or knockout. The cellular and molecular impact of Rac2 knockdown or knockout on the sensitivity of tumor cells to NK cell-mediated cytotoxicity was assessed using quantitative PCR, immunofluorescence, and mutation analysis. RESULTS: By screening expression levels of the Ras homology (Rho) GTPase family genes in tumor cells after co-culture with NK cells, we identified RAC2 as a key regulator of tumor cell resistance to NK cell-mediated cytotoxicity among the Rho GTPase family members. Furthermore, knockout of RAC2 in human colorectal cancer cells leads to increased tumor susceptibility to NK cell-mediated cytotoxicity in a xenograft tumor model. Mechanistically, the absence of RAC2 enhances tumor cell sensitivity to NK cell-mediated killing by facilitating cell-cell contact. CONCLUSIONS: These findings indicate that the inhibition of RAC2 in tumor cells substantially enhances their susceptibility to NK cell-mediated cytotoxicity, thereby providing a potential therapeutic target for optimizing NK cell therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。