Adoptively transferred macrophages for cancer immunotherapy.

过继转移巨噬细胞用于癌症免疫治疗

阅读:7
作者:Park Kyung Soo, Gottlieb Alexander P, Janes Morgan E, Prakash Supriya, Kapate Neha, Suja Vineeth Chandran, Wang Lily Li-Wen, Guerriero Jennifer L, Mitragotri Samir
BACKGROUND: Macrophages have been classically associated with their innate immune functions of responding to acute injury or pathogenic insult, but they have been largely overlooked as primary initiators of adaptive immune responses. Here, we demonstrate that adoptively transferred macrophages, with optimal activation prior to administration, act as a potent cellular cancer therapeutic platform against a murine melanoma model. METHOD: The macrophage therapy was prepared from bone marrow-derived macrophages, pretreated ex vivo with an activation cocktail containing interferon-γ, tumor necrosis factor-α, polyinosinic:polycytidylic acid, and anti-CD40 antibody. The therapy was administered to tumor-bearing mice via the tail vein. Tumor growth and survival of the treated mice were monitored to evaluate therapeutic efficacy. Tumors and spleens were processed to examine immune responses and underlying mechanisms. RESULTS: This immunotherapy platform elicits systemic immune responses while infiltrating the tumor to exert direct antitumor effects in support of the systemic adaptive response. The macrophage-based immunotherapy produced a strong CD8+T cell response along with robust natural killer and CD4+T cell activation, inducing a "hot" tumor transition and achieving effective tumor suppression. CONCLUSIONS: Owing to their inherent ability to home to and infiltrate inflamed tissues, macrophage-based cancer immunotherapies exhibited a unique in vivo trafficking behavior, efficiently reaching and persisting within tumors. Macrophages orchestrated a multiarmed immune attack led by CD8+T cells, with the potential for local, intratumoral activation of effector cells, demonstrating a novel cancer immunotherapy platform with meaningfully different characteristics than clinically evaluated alternatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。