Inhibition of the CXCR4/PLC Signaling Increases Dexamethasone-Induced Sensitivity by Activating the Mitochondrial Apoptotic Pathway in B-Cell Acute Lymphoblastic Leukemia.

抑制 CXCR4/PLC 信号传导通过激活 B 细胞急性淋巴细胞白血病中的线粒体凋亡途径来增加地塞米松诱导的敏感性

阅读:5
作者:Abdoul-Azize Souleymane, Vannier Jean-Pierre, Schneider Pascale
Understanding the mechanisms underlying glucocorticoid (GC) resistance in B-cell acute lymphoblastic leukemia (B-ALL) is essential to improve survival rates in relapsed children. We previously showed that GCs paradoxically induced their own resistance in B-ALL through CXCR4/PLC signaling, and that the inhibition of this pathway significantly reverses GC resistance in B-ALL cells and improves survival of GC-treated NSG mice in vivo. Here, we sought to determine whether the enhancement of GC sensitivity via inhibition of the CXCR4/PLC axis is associated with disruption of the mitochondrial pathway. Analysis of our previous transcriptomic data revealed that in B-ALL, the PLC inhibitor U73122 compromised multiple metabolic pathways related to metabolic reprogramming, mitochondrial function, and oxidative stress. Inhibition of PLC with U73122, protein kinase C with GF109203X, or CXCR4 with AMD3100 significantly potentiated dexamethasone (Dex)-induced mitochondrial membrane potential depolarization, reactive oxygen species production, cytochrome c release, caspase-3 activation, and decreased O(2) consumption in B-ALL cells. These observations were also confirmed after Dex treatment in a B-ALL Nalm-6 cell line transfected with CXCR4 small interfering RNA. Moreover, co-treatment with Dex and CXCR4, PKC, or PLC inhibitors increased the levels of the pro-apoptotic protein BIM (BCL-2 interacting mediator of cell death) and, consequently, promoted the cell death process. Together, these findings suggest that the CXCR4/PLC axis reduces Dex efficacy by limiting mitochondrial apoptotic activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。