Therapeutic Effects of TN13 Peptide on Acute Respiratory Distress Syndrome and Sepsis Models In Vivo.

TN13肽对急性呼吸窘迫综合征和脓毒症模型体内的治疗作用

阅读:4
作者:Byun Jae-Eun, Lee Jae-Won, Choi Eun Ji, Lee Juhyun, Yun Seok Han, Park Chan Ho, Kim Hanna, Kim Mi Sun, Yoon Suk Ran, Kim Tae-Don, Noh Ji-Yoon, Min Sang-Hyun, Seong Hyun-A, Ahn Kyung-Seop, Choi Inpyo, Jung Haiyoung
Background/Objectives: Regulation of acute inflammatory responses is crucial for host mortality and morbidity induced by pathogens. The pathogenesis of acute respiratory distress syndrome (ARDS) and sepsis are associated with systemic inflammation. p38 MAPK is a crucial regulator of inflammatory responses and is a potential target for acute inflammatory diseases, including ARDS and sepsis. We investigated the therapeutic effects of the TAT-TN13 peptide (TN13) on severe inflammatory diseases, including ARDS and sepsis, in vivo. Methods: To establish the ARDS model, C57BL/6 mice were intranasally (i.n.) administered lipopolysaccharide (LPS; 5 mg/kg, 40 µL) to induce lung inflammation. As a positive control, dexamethasone (DEX; 0.2 mg/kg) was administered intraperitoneally (i.n.) 1 h post-LPS exposure. In the experimental groups, TN13 was administered intranasally (i.n.) at doses of 2.5 mg or 5 mg/kg at the same time point. In the LPS-induced sepsis model, mice received an intraperitoneal injection of LPS (20 mg/kg) to induce systemic inflammation. TN13 (25 mg/kg, i.p.) was administered 1 h after LPS treatment. Control mice received phosphate-buffered saline (PBS). Lung histopathology, inflammatory cell infiltration, cytokine levels, and survival rates were assessed to evaluate TN13 efficacy. Results: TN13 significantly reduced inflammatory cell recruitment and cytokine production in the lungs, thereby mitigating LPS-induced ARDS. In the sepsis model, TN13 treatment improved survival rates by suppressing inflammatory responses. Mechanistically, TN13 exerted its effects by inhibiting the p38 MAPK/NF-κB signaling pathway. Conclusions: These results collectively suggested that TN13 could be an effective treatment option for severe inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。