The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination. We also show that inactivation of GSK3β by phosphorylation on Ser(389) is essential for DN3/DN4 thymocytes to survive while being stalled at the G1 and G2/M checkpoints. GSK3β promotes death by necroptosis, but not by apoptosis, of DN3/DN4 thymocytes during V(D)J recombination. Failure to inactivate GSK3β in DN3 thymocytes alters the Tcrb gene repertoire primarily through Trbv segment utilization. In addition, preferential recombination of proximal V segments in Tcra depends on GSK3β inactivation. Our study identifies a unique thymocyte survival pathway, enabling them to undergo cell cycle checkpoints for DNA repair during V(D)J recombination of Tcrb and Tcra genes. Thymocyte survival during cell cycle checkpoints for V(D)J recombination DNA repair determines TCRα/β repertoire.
Inactivation of GSK3β by Ser(389) phosphorylation prevents thymocyte necroptosis and impacts Tcr repertoire diversity.
Ser(389)磷酸化使GSK3β失活,从而阻止胸腺细胞坏死凋亡,并影响Tcr库的多样性
阅读:5
作者:Valença-Pereira Felipe, Sheridan Ryan M, Riemondy Kent A, Thornton Tina, Fang Qian, Barret Brad, Paludo Gabriela, Thompson Claudia, Collins Patrick, Santiago Mario, Oltz Eugene, Rincon Mercedes
| 期刊: | Cell Death and Differentiation | 影响因子: | 15.400 |
| 时间: | 2025 | 起止号: | 2025 May;32(5):880-898 |
| doi: | 10.1038/s41418-024-01441-z | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
