Previous studies on adult mice indicate that the mGluR5 agonist 2-chloro-5-hydroxyphenyl glycine (CHPG), reduces cuprizone-elicited losses in myelin. This effect is partly mediated by CHPG binding to mGluR5 receptors on reactive astrocytes, triggering the release of brain derived neurotrophic factor (BDNF), which results in an increase in myelin, and alleviates behavioral deficits. However, it remains unclear whether CHPG has similar beneficial effects on human cells. To address this issue, we examined effects of CHPG on human cells using both human induced pluripotent stem cell (hiPSC)-derived oligodendrocytes and primary human fetal brain cells. Treatment of hiPSCs (30μM, 5 days) or primary cells (30 μM, 3 days) with CHPG increases the percent of MBP(+)O4(+) mature oligodendrocytes relative to total O4(+)cells, without affecting survival. When effects of CHPG were evaluated on proliferating OPCs, effects on proliferation are observed. In contrast, when CHPG was evaluated in young oligodendrocytes, effects on proliferation were gone, suggesting that in this population CHPG is influencing differentiation. Interestingly, in contrast to observations in mice, mGluR5 expression in humans is localized on PDGFRα(+) oligodendrocyte precursor cells (OPCs) and O4(+) immature oligodendrocytes, but not astrocytes. Moreover, using purified human OPC cultures, we show a direct effect of CHPG in enhanced differentiation. To identify potential cellular targets of CHPG in the adult human brain, we analyzed postmortem tissue from individuals with multiple sclerosis (MS) and healthy controls. In contrast to the hiPSCs or fetal cells, demyelinated white matter from MS patients showed elevated mGluR5 mRNA expression in astrocytes. Taken together, our findings suggest that CHPG enhances the differentiation of human OPCs during development through a mechanism distinct from that observed in adult cuprizone-treated mice. Moreover, astrocytes in MS pathology upregulate mGluR5, suggesting they may become responsive to CHPG under disease conditions.
The mGluR5 Agonist, CHPG, Enhances Numbers of Differentiated Human Oligodendrocytes.
mGluR5激动剂CHPG可增加分化的人类少突胶质细胞的数量
阅读:5
作者:Huang Yangyang, Geywitz Celine, Bandaru Anjalika, Glass Ian A, Schirmer Lucas, Nobuta Hiroko, Dreyfus Cheryl
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 31 |
| doi: | 10.1101/2025.05.31.656838 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
