Despite the fact that X-box binding protein-1 (XBP-1) is one of the main regulators of the unfolded protein response (UPR), the modulators of XBP-1 are poorly understood. Here, we show that the regulatory subunits of phosphotidyl inositol 3-kinase (PI3K), p85alpha (encoded by Pik3r1) and p85beta (encoded by Pik3r2) form heterodimers that are disrupted by insulin treatment. This disruption of heterodimerization allows the resulting monomers of p85 to interact with, and increase the nuclear translocation of, the spliced form of XBP-1 (XBP-1s). The interaction between p85 and XBP-1s is lost in ob/ob mice, resulting in a severe defect in XBP-1s translocation to the nucleus and thus in the resolution of endoplasmic reticulum (ER) stress. These defects are ameliorated when p85alpha and p85beta are overexpressed in the liver of ob/ob mice. Our results define a previously unknown insulin receptor signaling pathway and provide new mechanistic insight into the development of ER stress during obesity.
The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation.
PI3K 的调节亚基 p85α 和 p85β 与 XBP-1 相互作用,并增加其核转位
阅读:4
作者:Park Sang Won, Zhou Yingjiang, Lee Justin, Lu Allen, Sun Cheng, Chung Jason, Ueki Kohjiro, Ozcan Umut
| 期刊: | Nature Medicine | 影响因子: | 50.000 |
| 时间: | 2010 | 起止号: | 2010 Apr;16(4):429-37 |
| doi: | 10.1038/nm.2099 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
