Abstract
Background:
Although chimeric antigen receptor (CAR)-T cell therapy has been remarkably successful for haematological malignancies, its efficacy against solid tumors is limited. The combination of CAR-T cell therapy with immune checkpoint inhibitors (CPIs), such as PD-1, PD-L1, and CTLA-4 antibodies, is a promising strategy for enhancing the antitumor efficacy of CAR-T cells. However, because most patients acquire resistance to CPIs, investigating other strategies is necessary to further improve the antitumor efficacy of CAR-T cell therapy for solid tumors. Recently, CD40 agonist antibodies showed potential antitumor efficacy by activating the CD40 pathway.
Results:
Based on the piggyBac transposon system, rather than the widely used viral vectors, we constructed a meso3-CD40 CAR-T targeting region III of mesothelin (MSLN) that possessed the ability to secrete anti-CD40 antibodies. Compared with meso3 CAR-T cells, which did not secrete the anti-CD40 antibody, meso3-CD40 CAR-T cells secreted more cytokines and had a relatively higher proportion of central memory T (TCM) cells after stimulation by the target antigen. In addition, compared with meso3 CAR-T cells, meso3-CD40 CAR-T cells had a more powerful cytotoxic effect on target cells at a relatively low effector-to-target ratio. More importantly, we demonstrated that the antitumor activity of meso3-CD40 CAR-T cells was enhanced in a human ovarian cancer xenograft model in vivo.
Conclusions:
In conclusion, these results highlight anti-CD40-secreting CAR-T cells generated by nonviral vectors as a potential clinical strategy for improving the efficacy of CAR-T cell therapies.
