Individuals with Down Syndrome (DS) represent one of the most susceptible populations for developing severe COVID-19, and a unique human genetic condition for investigating molecular mechanisms underlying susceptibility of neurologically vulnerable individuals to SARS-CoV-2 infection. Human Chromosome-21 (HSA21) triplication in DS causes global transcriptional deregulation, affecting multiple genes that may directly (e.g., TMPRSS2) or indirectly influence the SARS-CoV-2 entry into central nervous system (CNS) cells. The anti-viral immune response may also be altered in cells with trisomy-21 (T21) due to triplication of genes encoding for several interferon receptor subunits and interferon-stimulated genes (ISGs). Here, we demonstrate that human cells derived from fetal cortical specimens and maintained in primary cultures are susceptible to infection with a molecular clone of vesicular stomatitis virus engineered to express the Spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and to authentic SARS-CoV-2. The level of SARS-CoV-2 infectivity in cultures originated from different cortical specimens varied, seemingly depending on ploidy and chromosomal sex of the cells. We confirmed the presence of ACE2 and TMPRSS2 in cultures and found that XY T21 group had the highest TMPRSS2 mRNA levels, which was associated with increased infectivity in XY-compared to XX T21 cultures. The XX T21 cultures exhibited elevated expression of several ISGs (MX1, STAT1, and STAT2) which was associated with lower infectivity. The comparisons of postmortem aged brain specimens revealed reduced ACE2, TMPRSS2, but elevated STAT2 protein levels in individuals with DS and Alzheimer's disease (DS-AD) compared to control and Alzheimer's disease (AD) group. Collectively, these results suggest multifactorial regulation of SARS-CoV-2 infectivity in cortical cells that involves ploidy, chromosomal sex, and the expression of genes implicated in regulation of virus entry and anti-viral response as contributing factors.
SARS-CoV-2 infection of human cortical cells is influenced by the interaction between aneuploidy and biological sex: insights from a Down syndrome in vitro model.
SARS-CoV-2 对人类皮质细胞的感染受非整倍体和生物性别相互作用的影响:来自唐氏综合征体外模型的启示
阅读:9
作者:Lioudyno Maria I, Sevrioukov Evgueni A, Olivarria Gema M, Hitchcock Lauren, Javonillo Dominic I, Campos Sydney M, Rivera Isabel, Wright Sierra T, Head Elizabeth, Fortea Juan, Wisniewski Thomas, Cuello A Claudio, Do Carmo Sonia, Lane Thomas E, Busciglio Jorge
| 期刊: | Acta Neuropathologica | 影响因子: | 9.300 |
| 时间: | 2025 | 起止号: | 2025 May 30; 149(1):54 |
| doi: | 10.1007/s00401-025-02895-2 | 种属: | Human |
| 研究方向: | 细胞生物学 | 疾病类型: | 新冠 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
