Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1(+) metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.
Engineered Immunologic Niche Monitors Checkpoint Blockade Response and Probes Mechanisms of Resistance.
工程化免疫微环境监测检查点阻断反应并探测耐药机制
阅读:5
作者:Raghani Ravi M, Urie Russell R, Ma Jeffrey A, Escalona Guillermo, Schrack Ian A, DiLillo Katarina M, Kandagatla Pridvi, Decker Joseph T, Morris Aaron H, Arnold Kelly B, Jeruss Jacqueline S, Shea Lonnie D
| 期刊: | Immunomedicine | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Jun |
| doi: | 10.1002/imed.1052 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
