Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure.

在化学诱导加速卵巢功能衰竭的小鼠模型中,更年期连续过程中心肌转录组和蛋白质组的变化

阅读:4
作者:Lopez-Pier Marissa A, Marino Vito A, Vazquez-Loreto Andrea C, Skaria Rinku S, Cannon Danielle K, Hoyer-Kimura Christina H, Solomon Alice E, Lipovka Yulia, Doubleday Kevin, Pier Maricela, Chu Meinsung, Mayfield Rachel, Behunin Samantha M, Hu Tianjing, Langlais Paul R, McKinsey Timothy A, Konhilas John P
Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。